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Langevin and Master Equation in Quantum Mechanics 
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The behavior of a system in contact with a heat bath can be described either by 
a Langevin equation or by an equation for its density matrix. As both descrip- 
tions inevitably involve approximations, it is not evident that their results 
coincide. It is shown here by explicit calculation that they do. The main 
complication is that in the Langevin equation the random force is multiplied by 
a nonconstant factor, which itself feels the fluctuations, in an alternative 
formulation of the Langevin approach this complication is avoided. 
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1. I N T R O D U C T I O N  

In classical  mechanics  the re la t ionship  between the Langevin  equa t ion  and  
the F o k k e r - P l a n c k  equa t ion  is well known,  I~ bu t  in q u a n t u m  mechanics  
it is less obvious .  In  this art icle we shall  der ive explici t ly bo th  equat ions  
and  c o m p a r e  the results. The  F o k k e r - P l a n c k  equa t ion  takes  the form of  an 
equa t ion  for the densi ty  matr ix ,  which in this connec t ion  is usual ly  called 

the q u a n t u m  mas te r  equat ion .  
Cons ide r  a q u a n t u m  system S, with H a m i l t o n i a n  H s ,  in in terac t ion  

with a ba th  B of  ha rmon ic  osci l lators ,  whose H a m i l t o n i a n  is 

HB = ~ k,,a*,,a,, 

Here a,*, and  a,, are the c rea t ion  and  ann ih i l a t ion  ope ra to r s  of  the n th ba th  
osc i l la tor  and  the k,, are  their  frequencies. The  frequencies are supposed  to 
be densely d i s t r ibu ted  a long  the posi t ive real axis. The  in terac t ion  between 
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S and B is given by a Hamiltonian H~, which is a product, H= = 2SB, of 
an operator S referring to the system, and a bath operator 

~ = 2 v,,(a,, + a,',) 

The v,, are coupling constants and 2 is a parameter that scales the strength 
of the interaction. Thus the total Hamiltonian of the combined system is 

HT=Hs+~k , , a , , a , , *  +2S~v,,(a,,+a~) (1) 

In Section 2 we derive an equation that expresses the time derivative 
of the density matrix Ps of the system S, which is obtained from the density 
matrix of the total system by eliminating the bath variables in a well- 
known way. An expansion to order 2 2 turns this into an equation for Ps 
alone, which is the quantum master equation. From this equation it is 
possible to find an equation for the rate of change of the expectation value 
of an arbitrary system operator G. 

In Section 3 an equation for G is obtained resembling a Langevin 
equation, but its random term contains a prefactor, which has the effect 
that the average is not zero. It is essential to compute the average of this 
term in order to obtain an equation for the time dependence of the average 
of G. The resulting average of 0( t )  then agrees with that obtained from the 
master equation. 

In Section 4 an alternative derivation of the Langevin equation is 
given and the results are shown to agree with those of Sections 2 and 3. 

Section 5 contains a number of remarks and comments. 

2. T H E  Q U A N T U M  M A S T E R  E Q U A T I O N  

Let PT be the density matrix of the total system S + B. It obeys the 
exact evolution equation 

I~T = - - i [ n ,  PT] -- "s = (&aS + Z'gn + 2 ~ )  aT (2) 

Z,e stands for a superoperator acting on the space of operators p. We are 
interested in the density matrix Ps of the system S alone, obtained from PT 
by taking the trace over the bath. The method for obtaining an approximate 
equation for Ps alone is well known, c L 2~ but we shall briefly summarize it 
here. 

Define the projection superoperator ~ by its action on any operator 
in the total Hilbert space: 

~PT = Pn TrB PT = P~Ps 
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where p~ is the density matrix that describes the equilibrium state of the 
bath. Note the identities 

~ s  = . ~ s ~ ,  ~ , . ~  = ~ = o, ~ , ~ = o  

The meaning of the last one is that the average of the interaction term 
vanishes, which is the case in most applications. 

Equation (2) can be split into two coupled equations for ~PT and 
(1 - ~ )  p T  = ~ p T  : 

c5, ~PT = - ~ - ~ P  T + 2 . ~  ~PT (3b) 

Solving the second line yields 

~pT(t) = 2 e~'~('-c).~.~t~pT(t')dt' (4) 

The initial value -~px(0) vanishes because we assume that at some initial 
time t = 0 the density matrix factorizes and the bath is in equilibrium: 

_ e 

PT(0) -- PS(0) ~) P 8 (5) 

Substitute (4) into (3a) to get an equation for ps(t) by itself, 

~s(t)=~q~sPs(t)+2"-TrB~q ] e e ~ ' ~ . ~ p ~ p s ( t - 3 ) d r  

The second term is multiplied by 2 2 , so that in the exponent the interaction 
term may be neglected ("Born approximation") 

f2 ~s(t)=~sPs(t)+2 2 {TrB~q]e~'~e~"~p~} p s ( t - r ) d 3  (6) 

This is not just an ad hoc approximation, but an essential step; under the 
integral the. evolution is treated as unperturbed. (3) The quantity in curly 
brackets is a superoperator acting on ps( t - r ) ,  which works out to 

- T r n [ S B ,  e-%~ e-%~[ SB, p~aps( t - 3) ] ] 

The exponentials move the time forward in Ps, but backward in the 
observables S and B, 

- T r a [ S B ,  [ S o ( - r )  B o ( - r ) ,  p~aps(t)] ] 
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The subscript zero indicates evolution according to the unperturbed 
~s + Lq'~- ~ (in other words, the interaction representation). Thus 

Bo(,) = Z v,,{ a,,(O) e -,k,,, + a,,,e,k,,,} (7) 

The double commutators work out to 

SSo( - r) ps( t ) (  BBo( - r) ) ~ - Sps( t) So( - r ) (  B o ( - r )  B)  ~ 

- S o ( - r )  ps(t) S(BBo(  - r ) ) "  + ps(t) S o ( - r )  S ( B o ( - r )  B)  ~ 

The angular brackets ( )~ indicate an average over the equilibrium dis- 
tribution p~ of the bath. One easily finds 

" ( e-ik"r eik,,r 
( B B o ( - r ) ) ~  = ~ v5 _ 1 - e - / ' k , , + ~ J  

= F , . ( r )  - i F , . ( r )  

where 

F,.(r)= y'o~,cosk,,rcoth(�89 F , . ( r ) = ~  v~,sink,,r 

and fl indicates the bath temperature. Similarly 

( B o ( - r )  B )  ~ = F,.(r) + iF.,.(r) 

After some algebra one obtains 

f{ 
I 

~s( t )=H?sPs( t )+i2  2 / ' , .(r)[S, [ S o ( - r ) , p s ( t ) ] ] +  dr 

f(/ - -2  2 F,.(r)[S, [ S o ( - r ) ,  Ps ( / ) ] ]  dr 
) 

(8) 

where [ ... ] + denotes the anticommutator. 
This is the quantum master equation for the density matrix ps(t). 

From it one can determine for any observable G referring to the system S 
how its average ( G ) ( t ) = T r s  Gps(t) evolves. Multiply (6) with G and take 
the trace over S: 

a, (a) ( t )=  -(&G)(t)+i),-" r.,(r)([[O,S],S,,(-r)]+)(t)dr 
) 

f' - ) 2  F , . ( r ) ( [ [G ,  S],  & , ( - r ) ] ) ( t ) d r  
} 

(9) 
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This consequence of the quantum master equation can be compared to the 
average given by the Langevin equation derived in the next two sections. 

3. THE LANGEVIN  EQUATION 

We denote by S(t), G(t), a,,(t), etc., the Heisenberg operators whose 
time dependence is determined by the total Hamiltonian (1). Thus 

G(t) = i [Hv ,  G(t)] 

= i[Hs( t  ), G(t)] + i2[S(t),  G(t)] ~, v,,{a,,(t) + a,*,(t)} 

d,,( t ) = - ik,,a,,( t ) - i2v,,S( t ) 

The latter equation can be solved to give 

a,,(t) = a,,(0) e - i~ ' , ' -  i2v, [ '  ei*,,"-"~S(t ') dr' 
~ J  

Substitution in the former yields 

G(t) = i[Hs(t) ,  G(t)] + L(t) -2 i22[S( t ) ,  G(t)] 

f2 x ~ v ~ ,  s i n k , , ( t - t ' ) S ( t ' ) d t '  (lOa) 

L(t) = i2[ S(t), G(t) ] Bo(t) (10b) 

where Bo(t) is the same expression as given in (7). 
This equation resembles a Langevin equation, but it is still exact; 

solving it would be tantamount to solving the Schr6dinger equation for the 
total system. It is necessary to apply an approximation by neglecting all 
terms of higher order than 22 . Accordingly we replace on the second line 
of (10a) the Heisenberg operators by their interaction representation: 

So(t)=e-~'~'S(O),  Go( t )=e  ~'~'G(O) 

This turns Eq. (10) into a true Langevin equation. The fluctuating force 
L(t), however, does not have an average equal to zero, owing to the com- 
mutator that multiplies Bo(t). We have to find this average to order 2 2. 

The exact time dependence of the commutator in (10b) is given by 

[S(t), G(t)] =e-~q'+~'~""[S(O), G(0)], s = 5as + 5a~ 
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We use the operator identity 

e -~ '-/~' + ~'~'~1 ' = e  - 'J~'' - ~o e -  '-'~'~- ~))l.~ e -~ '0  + ~'> dr 

f2 = e - ~ ' ~ " - 2  e - ~ ' ~ ' - r l ~ e - J ~ ' ~ d ~ + ( 9 ( 2  2) (11) 

When this is substituted into (10b) the first term is 

i[ So(t), G0(t)] Bo(t) 

The average of this term over the initial bath distribution vanishes because 
Bo(t) is linear in the a,,, a~, while So(t), Go(t) are independent of the bath. 
The second term, however, yields 

( L ( t ) ) r  = - 2  f~ [ S o ( t - r ) ,  [So(t), G o ( t ) ] ] ( B o ( t -  r) Bo(t)) r dr 

f2 = - 2  [ S o ( t - r ) ,  [So(t), Go(t)l]{F, .(r)+ iF,(r)} dr 

Substitution in (10a) finally gives 

6, (G( t ) )  r = i[Hs(t) ,  ( G ( t ) )  ~] 

- , t  2 r , . ( r ) [So( t - -T) ,  [So(t), G( t ) ] ]  dr 

f2 - i,l-' r , . ( r ) [ S o ( t  - r) ,  [So( t ) ,  G ( t ) ]  ] + d r  

When this is averaged over ps(0) one obtains the same formula as the 
result (9) of the master equation treatment. Note that in this equation So(t) 
may be replaced with S(t), and Go(t) with (G( t ) )  ~, because that makes no 
difference in this order of 2. 

4. A L T E R N A T I V E  D E R I V A T I O N  OF THE L A N G E V I N  E Q U A T I O N  

An alternative derivation of the Langevin equation may be obtained as 
follows. Define a projection superoperator ~*  acting on the observables C 
in the total Hilbert space by taking their bath average t4' sl 

~ * C - -  Tr~(p~ C) = ( C )  e 
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It is the adjoint of the projector ~ in Section 2. The evolution of any 
operator C is 

C(t) = ~*C(t)  = - ~ C ( t )  = i[Hv, C(t)] 

Note the identities 

~'+~es = ~s ~ '+,  ~)+~B = O, ~ '+~  = 0 

Consider an observable G in the system space. Our aim is to derive a 
Langevin equation for its Heisenberg representation G(t). Introduce the 
quantity 

K( t) = - e -  ~+U"Q* SYG 

which will turn out to be the fluctuating force. One has 

- -  ~ G =  iE H s ,  G] + i2[ H., G] 

- ~*.~G = i[H s, G] 

Hence 

K(t) =e--~*'-r'i2[H,, G] =e-S 'e"{O-- i[HB,  G]} (12) 

With the aid of the identity ( 11 ) one may write 

f2 K(t) = G(t)-- i[Hs,  a](t) + e-~q'-~lC~t~K(r) dr 

which is the same as 

"G(t) =K(t) + i[Hs, G](t) 

f2 --2 2 e - ~ ' " - ~ ( [ H i ,  e--"'~"[Ht, a ] ] )  e dr 

This is an exact equation for G(t). In order to obtain the Langevin 
equation the ~ dependence must be approximated by replacing ~ with ~0; 
we have 
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G(t )  = K ( t )  + i[ H s ,  G](t)  

-)?-fs :"<[S,,I-r)B,,(-r), [SB, 6]]>~dr 

= K ( t )  + i [ H  s,  G](t)  

- i2 2 F,.(r)[ S o ( - r ) ,  [S, G] ] + (t) dr 

- 2 2 F , . ( r ) [ S o ( - - r ) ,  [S, G] ] ( t )  dr 
) 

(13) 

This is an operator equation in the total space of system plus bath. It is a 
Langevin equation for G(t) .  

In order to compare this equation with the master equation we 
average it over the initial distribution (5). First the average over p~ yields 

( G ( t ) )  ~ = i( [Hs ,  G] ( t ) )  ~ 

f[ 
/ 

+i2"- 12.(r)({[[O,S],S,,(-r)]+}(t))~dr 
J 

- 2  2 F , ( r ) ( { [ [ G ,  S],  S o ( - r ) ] } ( t ) ) ~  dr 

This is an operator in the system space alone. Finally the average over 
ps(0) yields an equation which is identical to that obtained in Section 2. 
Note that the bath average of the fluctuating force ( K ( t ) )  r vanishes accor- 
ding to (12). 

5. D I S C U S S I O N  

Our first remark is meant to emphasize the crucial role of the "Born 
approximation." In each of the three preceding sections the derivation 
consisted in first rewriting the exact equation in a suitable form, and subse- 
quently replacing under the integral the actual time evolution by the unper- 
turbed one. Without this step one is stuck with a formally correct equation, 
but of no use, because it cannot be solved and none of the familiar features 
of damping and fluctuations can be recognized in it. 

A second remark is that what is here called the Langevin equation is 
actually much more general than the familiar one describing Brownian 
motion. Equations (10) and (13) are formulated for any system observable 
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G rather than just for the velocity) 6} Let us take the special case of a one- 
dimensional particle in potential V(Q), with an interaction as in (1) in 
which S = Q; and let us apply (13) to the observable G = P. The last line 
of (13) vanishes and one gets 

P(t)  = - V'(Q(t))  + 222 f F,.(r) Q(t - r} dr + K(t} 

K(t)  = --2Bo(t) 

After partial integration this reduces to the well-known Langevin equation 
with memory. 

The third remark is that Eqs. (8) and (13) are not yet satisfactory 
inasmuch as the integrations over r extend from 0 to t, and therefore still 
refer to the initial time [at  which the initial condition (5) has been 
imposed]. It is therefore necessary to make sure that the memory kernels 
F~. and F,. decay within a finite correlation time L.. This will be the case if 
the bath frequencies k,, and the coupling constants v,, are smoothly spread 
out. Moreover, it is necessary that the bath temperature is not so low that 
the relevant oscillators are frozen out by the Planck factor. Under these 
conditions the integrations over r may be extended to infinity without 
serious error. 

An extreme way to meet the smoothness requirement is the "Ohmic 
case," defined by v],/k,, having a constant density }, in the frequency scale. 
One then has 

F,.(r) = }, k cos kr coth �89 

The latter reduces for small fl to 

C( r}  ~ (2~},/fl) ~(r} 

where fi(r) stands for a sharp peak with width r,. ~ ti/kBT. Thus in this case 
the master equation (8) reduces to 

r = s176 -- n22}'kB T [ S ,  [S, Ps] ] 

I "~ + UU~-}'[S, [ [Hs ,  S],  Ps] ] + (14) 

The final remark concerns the Kossakowski-Lindblad condition, ~7J 
which is a general requirement of the form that any evolution equation for 
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Ps must have in order to be Hermitian and positive definite with unit trace. 
This requirement is obeyed by the first two terms of (14), but not by the 
last one, nor by the general equation (8). In fact it has been found that the 
expansion in the interaction leads to a violation of that requirement, ~z'~ 
except for the harmonic oscillator. ~ A remedy has been proposed by 
Davies, ~9~ but the present authors do not feel that they have really under- 
stood this difficulty. 
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